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Abstract 

 
We show that, owing to small noise and smoothed excursions, the unbiased FIR filtering 

algorithm produces more accurate estimates of the TIE model of a local clock than the 
sawtooth-less GPS-based measurements.  The algorithm becomes much more efficient in 
estimating the fractional frequency offset and higher order states.  For the algorithm to 
work with minimum errors, the optimal time step τopt and number of the points in the 
average Nopt must be ascertained in the sense of the minimum mean-square error (MSE) for 
each of the clock states.  The relevant dependencies of Nopt on τopt are found experimentally 
for a crystal clock.  The trade-off between the estimates and sawtooth-less measurements is 
illustrated graphically. 

 
 

INTRODUCTION 
 
Evaluation of the time interval error (TIE) of a local clock is easily provided using the commercially 
available GPS timing receivers.  The problem is that the GPS-based measurements with, for example, the 
Motorola family of the receivers such as the SynPaQ III GPS Sensor, induce the sawtooth noise of about 
±50 ns owing to the principle of the one pulse per second (1PPS) signal formation utilized in the 
receiver.1 By means of the receiver [1] or auxiliary software [2], the sawtooth noise may be reduced by a 
factor of about 10.  In the measurements of the TIE, it can also be suppressed using the recently designed 
unbiased finite impulse response (FIR) filter and algorithm [3,4] allowing for an error less than that 
obtained by a standard Kalman filter.  The first comparative results in estimating the TIE have shown 
[5,6] that the FIR estimates become much more efficient than the sawtooth correction if the unbiased FIR 
filter is optimized for the time step τopt (obtained by thinning in time the 1PPS pulses) and the number of 
the points Nopt in the average. 
 
In this paper, we take a more precise look at the problem comparing the TIE estimates of a local crystal 
clock to provided simultaneously the GPS-based sawtooth-less measurements and measurements for a 
reference rubidium clock.  We also present the results of the experimental evaluation of the optimal Nopt 
and τopt for several states of the local clock, thereby answering the question:  what are optimum values τopt 
and Nopt for the unbiased FIR filtering algorithm in the sense of the minimum mean-square error (MSE) in 
each of the estimates? 
 
                                                 
1Clark and Hambly reported in [1] that, in the modified receivers, the noise bounds are reduced to ±13 ns. 
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AN  UNBIASED  FIR  FILTERING  ALGORITHM 
 
Before discussing the results of the experimental studies, it is in order first to describe in brief the TIE 
model of a local clock and the unbiased FIR filtering algorithm proposed in [4] and thereafter studied in 
[6]. 
 
TIE  MODEL  OF  A  CLOCK 
 
Most commonly, the TIE polynomial model of a clock projects ahead on a horizon of N points from the 
starting point n = 0 with the Kth-degree Taylor polynomial: 
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where xl+1  ≡  xl+1 (0), l ∈  [0, K], are initial states of the clock and w1(n,τ) is a clock noise with known 
properties.  By extending the time derivatives of the TIE model to the Taylor series, the signal and 
observation equations become, respectively, 
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where 
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is a (K + 1) × 1 vector  of the clock states and  
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is a (K + 1) × (K + 1) time-varying system matrix. 
 
For an equal number of the states and measurements, the observation vector is described by 
 

T
K nnnn )],()()([)( 121 τξξξξ −= K  

 
and the (K + 1) × (K + 1) measurement matrix C is typically unit.  The (K + 1) × 1 clock noise vector is 
described by 
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with the components caused by the oscillator noises.  Finally, the noise vector 
 

T
K nvnvnvn )]()()([)( 121 −= Kv  

 
contains correlated or uncorrelated components that are not obligatory white Gaussian.  The GPS noise  
v (n) dominates on a horizon N; that is, typically,   Therefore, w (n, τ) is 
neglected in (3) and in the FIR procedure [4]. 

.)(),( 22
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AN  UNBIASED  FIR  FILTERING  ALGORITHM 
 
The unbiased FIR filtering algorithm shown in Fig. 1 and Fig. 2 gives a typical structure of the sawtooth 
noise induced by the receiver and provided at one of its outputs as the negative sawtooth.  It may be seen 
that the noise is mean-zero with the upper and lower bounds of ±50 ns and uniformly distributed.  The 

clock first state estimate  (TIE) is obtained with h)(1 nx
∧

K(i) at a horizon of NK points.  The observation 

ξ2(n) for the second state x2(n) (fractional frequency offset) is then formed by increments of . 

Accordingly,  is achieved with h

)(1 nx
∧

)(2 nx
∧

K-1(i) at a horizon of NK-1 points.  Inherently, the first accurate 

value of  appears at the (N)(2 nx
∧

K + NK-1)th point starting from n = 0.  Finally, the last state estimate 

 is calculated with h)(1 nx K+

∧

0(i) at a horizon of N0 points, using ξK+1(n) that is formed in the same manner 

as ξ2(n).  The first correct value of  appears thus at the (N)(1 nx K+

∧

K + NK-1 + … + N0)th point. 
 
The unique low order FIRs for the algorithm (Fig. 1) are derived in [4] and given below.2
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having the inherent common properties: 
 

                                                 
2 The kernel (6) was first derived in [3]. 
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Depending on the model degree K, we thus have several particular realizations of the algorithm.  If a 
noiseless model is assumed to be time-invariant, K = 0, the only nonzero state is the TIE and the estimate 
of the TIE is provided by simple averaging, 
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The linear model, K = 1, is processed for two states by 
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For the quadratic model, K = 2, the 3-state unbiased FIR batch algorithm becomes 
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Finally, if we assume a cubic model, K = 3, the algorithm is formed with 
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As may be seen, the calculus (9)–(18) needs setting two constants, N and τ, for each of the estimates to be 
unbiased and near optimal in the sense of the minimum MSE. 
 
 
OPTIMUM  N  AND  τ 
 
Experimental evaluation of Nopt and τopt for each of the unbiased FIR filters in (9)–(18) was provided for 
the crystal clock embedded in the Stanford Frequency Counter SR620 and rubidium clock attached to 
SR625.  Measurements were made with the GPS timing sensor SynPaQ III and SR620 for τ = 1 s (GPS -
measurement).  Simultaneously, to obtain reference trends for each of the estimates, the TIE of the local 
clock had been measured for the atomic clock (we exploit the rubidium oscillator attached to SR625 or 
cesium clock Cs III of Symmetricom).  Initial time and frequency shifts between two measurements were 
then eliminated statistically and a transition to τ > 1 s was provided by the 1PPS measurements thinning 
in time.  The difference between each estimate and the reference trend or its time derivatives is evaluated 
in the sense of the MSE and the optimal values Nopt and τopt are found for the minimum MSEs. 
 
In our experiment, for signal processing, we exploited measurements obtained during about one day. 
Therefore, the upper bound of τ was limited by 104 s, inducing two principal limitations for Nopt and τopt: 
 
 
• Finite data of measurements (about 1 day) affecting the estimates if τ > 103 s. 
 
• Long-term phase drifts in the reference clocks affecting estimates. 
 
Below we bring results of experimental evaluations of τopt and Nopt for several states of a local crystal 
clock via the GPS-based and rubidium-based measurements. 
 
THE  FIRST  CLOCK  STATE  (TIE) 
 
Fig. 2 illustrates an evaluation of Nopt vs. τ for the first clock state (TIE) with the four algorithms.  A 
common conclusion is that the minimum root-mean-square error (RMSE) corresponds to τ = 1 s by all of 
the algorithms and, hence, estimating the TIE does not require thinning in time the measured data.  For 
TIE, τopt is exactly 1 s.  One may also observe that simple averaging provides for with a minimum number 
N0(opt) of the points among all other filters.  However, the RMSE in simple averaging (5) is larger than in 
linear and quadratic kernels, (6) and (7), respectively.  The cubic kernel (8) produces even larger error 
than in (6) and (7).  Based upon this, we identify the TIE model of the investigated clock to be either 
linear or quadratic on the horizon of Nopt points. 
 
THE  SECOND  CLOCK  STATE  (FRACTIONAL  FREQUENCY  OFFSET) 
 
To ascertain τopt and Nopt for the second clock state (fractional frequency offset), one first needs to 
estimate optimally the TIE for the optimal N and τ taken from Fig. 2.  Thereafter, by the algorithm (Fig. 
1), the weighted increments of these estimates serve as measurements for the second state.  Fig. 3 shows 
the results of evaluating the Nopt vs. τ for the second clock state and we indicate that the minimum RMSE 
corresponds to τ ranging from 10 s to 100 s.  We notice that the error reduction in the last decade of τ in 
Fig. 3 is caused by the finite database. 
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THE  THIRD  CLOCK  STATE  (LINEAR  FRACTIONAL  FREQUENCY  DRIFT  RATE) 
 
In a like manner, measurements are provided for the third clock state termed the linear fractional 
frequency drift rate.  The results are shown in Fig. 4.  Here, a minimum RMSE fits the region of τ from 
300 s to 600 s.  For this minimum, the optimal N is provided by Fig. 4 exactly, even though, on the whole, 
the N0(opt) was found with some error.  We notice again that the last decade in the τ scale (from 103 s to  
104 s in Fig. 4) is not reliable to make conclusions for, owing to the finite database. 
 
THE  FOURTH  CLOCK  STATE  (QUADRATIC  FRACTIONAL  FREQUENCY  DRIFT  RATE) 
 
To evaluate Nopt and τopt for the fourth clock state that may be called the quadratic fractional frequency 
drift rate, the only algorithm may be used, that is (15)–(18).  Accordingly, Fig. 5 gives one curve for 
N0(opt) and the other one for the RMSE vs. τ.  The principal observation is that the minimum RMSE lies 
likely in the last decade of τ from 103 to 104 or even beyond this decade.  This is not unexpected, since the 
frequency changes very slowly even in crystal oscillators.  Therefore, the spectral content associated with 
the quadratic drift rate inherently places very closely to zero and much time is necessary to evaluate the 
N0(opt) and τ0(opt).  Nevertheless, one may conclude that, even approximately, the quadratic fractional 
frequency drift rate may be estimated by the unbiased FIR algorithm with τopt about 3 hours with only a 
couple of points in the average. 
 
 

MEASUREMENTS  AND  ESTIMATIONS  OF  THE  TIE 
 
Provided τopt and Nopt for every clock state (Figs. 3–6), we compare the unbiased FIR estimates to the 
sawtooth corrected GPS-based measurements. 
 
ALMOST  LINEAR  TREND  OF  THE  TIE 
 
In the first experiment, we selected the part of the process in which the TIE of a crystal clock undergoes 
almost linear regular changes.  Following Fig. 3, the time step was set to be τ = 1 s and we set N = 2060 
and N = 2050 to estimate the TIE from the measurements with and without the sawtooth correction, 
respectively, in the minimum MSE sense.  The results are shown in Fig. 7.  The first point to notice is that 
the RMSE of the measurements obtained with the sawtooth correction is 4.67 ns that coincides with the 
facilities of the correction.  The linear FIR estimates (6) applied to measurements without and with the 
sawtooth correction were found to be, respectively, 1.6 ns and 1.69 ns, which is substantially lower than 
in the sawtooth-corrected measurements.  An additional observation shows that noise in the estimates is 
also lowered, having no excursions, contrary to measurements.  Certainly, for the near linear trend, the 
unbiased FIR estimates look superior to the sawtooth correction. 
 
ALMOST  QUADRATIC  TREND  OF  THE  TIE 
 
For the second experiment, we found a region where the TIE changes almost quadratically (Fig. 8).  The 
optimum numbers were found here to be N = 920 and N = 790 for measurements with and without the 
sawtooth correction, respectively.  We notice that these values are consistent to those shown in Fig. 3 at τ 
= 1 s.  The RMSE error of the sawtooth-corrected measurements was calculated to be 7.5 ns.  Almost the 
same errors, 8.0 ns, and 7.5 ns, were found in the estimates obtained from measurements without and with 
the sawtooth correction, respectively.  Because the nonlinear case is more regular, we conclude that the 
sawtooth correction and the estimation produce almost the same RMSEs.  However, like in Fig. 7, the 
noise in the estimates is still substantially lower and excursions are almost fully smoothed. 
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COMPLEX  FUNCTION  OF  THE  TIE 
 
We finally examined measurements with a somewhat sophisticated behavior of the TIE (Fig. 9).  The 
optimum numbers were found to be N = 1150 and N = 1120 (with and without the correction, 
respectively). F or these values, the RMSEs of the estimates were calculated to be 7.83 ns, and 8.0 ns, 
respectively, and the RMSE of the sawtooth-corrected measurements was evaluated by 8.87 ns.  Again, 
we watch for the comparable results and notice that noise and excursions are still much more suppressed 
in the estimates. 
 
 
MEASUREMENTS  AND  ESTIMATIONS  OF  THE  FRACTIONAL 
FREQUENCY  OFFSET 
 
By the algorithm (Fig. 1), measurements and estimates of the second clock state x2(n) = y (n) (fractional 
frequency offset) are provided with the discrete-time derivatives applied to the TIE.  Accordingly, 

measurements of the fractional frequency offset are formed by , where  
should be treated to be either the TIE measurements with the sawtooth correction or the estimates of the 
TIE obtained by the unbiased FIR filter.  By the results given in Fig. 4b, the minimum error of the x
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2(n) = 
y (n) estimate is obtained with τ = 10 ... 100 s.  We therefore set τ = 100 s, since it corresponds to a lower 
optimum number N (Fig. 4a), thus a smaller computational time.  The results of measurements and 
estimations are shown in Fig. 10.  Only 20 points were enough to provide a minimum RMSE in the 
estimates.  We therefore set N = 20 to a simple averaging (5) and filter the time derivatives of both 
estimates of the TIE, namely with and without the sawtooth correction. 
 
Fig. 10a demonstrates that the derivative of the reference measurement fits, on the whole, the derivative 
of the GPS-measurement with the sawtooth correction.  It is also seen that the GPS-measurement 
produces much larger noise, which standard deviation reaches 55.6 × 10-12.  The latter value may be 
treated as a resolution in frequency of the GPS-based sawtooth-less measurements.  Contrarily, the 
unbiased FIR estimates (Fig. 10b) produce much lower noise and trace very close to Rb-measurements. 
Indeed, the standard deviations of the differences between the reference curve and two estimates (without 
and with the sawtooth correction) were evaluated at the levels of, respectively, 15.0 × 10-12 and 13.4 ×  
10-12.  Fig. 10c demonstrates how well the estimates fit the Rb-measurements.  For the comparative 
purposes, in Fig. 10d, we show the estimates obtained by the linear FIR function.  For this filter, the 
RMSEs have appeared to be larger, respectively, 16.7 × 10-12 and 14.6 × 10-12.  The latter means that the 
algorithm is correct suggesting the uniform kernel (5) for the second clock state. 
 
 
CONCLUDING  REMARKS 
 
In this paper, we presented the results of the experimental comparison of the GPS-based TIE 
measurements (with and without the sawtooth correction) and unbiased FIR estimation for a local crystal 
clock.  We also brought the relevant plots to evaluate the optimal time step τopt and optimum number of 
the points Nopt in the average for the uniform, linear, quadratic, and cubic kernels employed by the 
unbiased FIR filtering algorithm (Fig. 1).  The conclusions are as follows. 
 
The optimal values τopt and Nopt differ for different clock states.  For the crystal clock imbedded in the 
Stanford Frequency Counter SR620, the first state (TIE) must be filtered with τ = 1 s and the relevant Nopt 
taken from Fig. 3a.  The second state (fractional frequency offset) is estimated with τ = 10 … 100 s and 
the relevant Nopt provided by Fig. 4a.  The third state (linear fractional frequency drift rate) needs setting τ 
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= 300 … 600 s with Nopt taken from Fig. 5a.  Finally, the fourth state (quadratic fractional frequency drift 
rate) may be evaluated with τ of more than 104 s and only several points in the average. 
 
An experimental comparison of the GPS-based measurements with the sawtooth correction and the 
relevant unbiased FIR estimates of the TIE model of a local crystal clock led to the following 
conclusions: 
 
• GPS-based sawtooth-less measurements represent basically the mean value of its origin (without 
correction) with a small amount of noise.  Therefore, the unbiased filter applied to either of these 
measurements produce almost the same output (Figs. 7b, 8b, 9b, and 10b). 
 
• The real-time unbiased FIR filtering algorithm (Fig. 1) efficiently suppresses noise and smoothes 
excursions featured to sawtooth-less measurements. 
 
• The unbiased FIR filter produces much lower errors for the fractional frequency offset and higher 
degree states owing to the lower noise intensity in the estimates of the TIE. 
 
Overall, owing to small noise and smoothed excursions in the estimates, the unbiased FIR filtering 
algorithm (Fig. 1) may be considered to be more efficient than the sawtooth-less measurements, whenever 
accurate evaluation of the TIE model of a local clock is needed. 
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